###
What’s Trending with the Elements?

This resource, aligned with Chemistry TEKS (5)(C), provides alternative or additional tier-one learning options for students using the periodic table to identify and explain trends.

###
The Bohr Model

Students will understand Bohr’s experimental design and conclusions that lead to the development of his model of the atom, as well as the limitations of his model.

###
Valence Shell Electron Pair Repulsion

Given illustrations or descriptions, students will predict the shape of molecules based upon the extent of the electron pair electrostatic repulsion.

###
Chemical Bonding: Metallic Bonds

Given scenarios or diagrams, students will describe the nature of metallic bonding and explain properties such as thermal and electrical conductivity, malleability, and ductility of metals.

###
Electron Configuration

Given descriptors, diagrams, and chemical symbols, students will use the periodic table to determine the electron configuration of neutral atoms.

###
Nomenclature: Covalent Compounds

Given descriptions, diagrams, or scenarios, students will write and name the chemical formulas of binary covalent compounds.

###
Ionic Bonds: Electron Dot Formulas

Given descriptions, diagrams, scenarios, or chemical symbols, students will model ionic bonds using electron dot formulas.

###
Moles and Molar Mass

Given descriptions or chemical formula of a substance, students will use the concept of a mole to relate atomic mass to molar mass.

###
Types of Solutions: Saturated, Supersaturated, or Unsaturated

Given scenarios, graphs, diagrams, or illustrations, the student will determine the type of solution such as saturated, supersaturated, or unsaturated.

###
Conservation of Mass—It's the Law!

This resource includes videos, interactives, and additional resources to help students understand the law of conservation of mass and how to balance chemical equations.

###
Introducing Conic Sections

Given a verbal description or a pictorial representation, the student will describe a conic section as the intersection of a cone and a plane.

###
Graphing Conic Sections: Ellipses

Given an equation, the student will use parameter changes to graph an ellipse and to identify the changes in the graph of an ellipse.

###
Graphing Conic Sections: Hyperbolas

Given an equation, the student will use parameter changes to graph a hyperbola and to identify the changes in the graph of a hyperbola.

###
Properties: Extensive and Intensive

Given descriptions or illustrations of properties, students will determine whether the property is chemical or physical, and if it is physical, if it is intensive or extensive.

###
Periodic Table Families

Given descriptions or specific element groups, students will use a Periodic Table to relate properties of chemical families to position on the table.

###
Solids, Liquids, and Gases

Given descriptions, scenarios, or illustrations, students will distinguish between the compressibility, structure, shape, and volume of solids, liquids, and gases.

###
Properties: Mixtures

Given descriptions, scenarios, or illustrations of properties, students will distinguish between pure substances and mixtures.

###
Atomic Theory: Electromagnetic Spectrum

Given a diagram of the electromagnetic spectrum, students will relate the frequency to type of wave produced.

###
Electromagnetic Spectrum

Given descriptions or illustrations, students will use the light and energy formula to solve for frequency, wavelength, or energy.

###
Average Atomic Mass

Given descriptions, scenarios, or diagrams, students will calculate the average atomic mass by weighted average.